

BUNDREX® PRODUCTS

Steel Fibers are added to the concrete mix to provide multidimensional reinforcement and is used to replace rebar or mesh.

Application

Responding with optimal solution by carrying full product line-up.

Steel Fiber

BUNDREX is an ideal concrete reinforcement which shifts the properties of concrete from brittleness to ductility, and increases toughness and resistance to cracking by drying shrinkage and Plastic shrinkage.

Products

SUPER BUNDREX

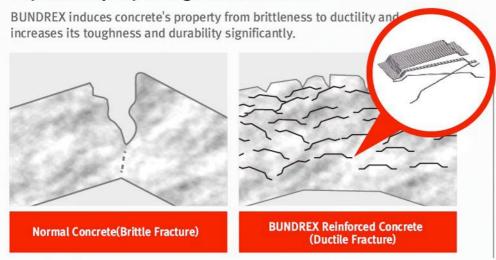
Tensile Strength (1,100~1,500MPa)

Arched Fiber, new shaped and patented steel fiber increasing the performance of concrete by up to 20% compared to conventional steel fiber products.

Ultra/ High BUNDREX

Tensile Strength: 1,500 ~ 2,200MPa

The recently developed steel fiber which has extremely high tensile strength, enabling higher concrete performance.


BUNDREX

Tensile Strength (1,100~1,350MPa)

Standard type steel fiber with its quality and performance.

BUNDREX[®] General Feature of **BUNDREX**[®] Steel Fiber

Physical Property Change of the Concrete

Expected Effects for Concrete

Following to each concrete properties, Bundrex SFRC effects can be remarkably increased.

Concrete Properties	BUNDREX ® Effects
Modulus Rupture	Increased by up to 3 times
Shear Strength	Increased by up to 2 times
Torsional Strength	Increased by up to 2 times
Fatigue Resistance	Increased by up to 1.8 times
Abrasion and Corrosion	Increased by up to 1.4 times
Shock Absorption	Increased by up to 15 times
	Alamani Carameta A BUNDEEV® saiafe and assess

Normal Concrete BUNDREX® reinforced concrete

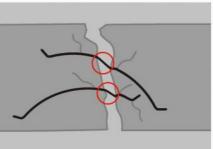
Physical Property Comparison

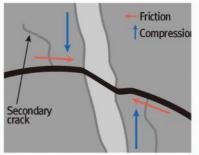
Classification	General Concrete Slab	Steel Fiber Reinforced Concrete Slab
Workability	Decreased workability	Increased workability
Control of crack at initial drying shrinkage	Upper drying shrinkage crack	Decrease in upper drying shrinkage crack
Initial crack strength and maximum yield strength	Average	Excellent
	Concrete slab without rebar < Concrete slab with rebar < Concrete slab with steel fiber	
Fracture condition	Brittleness behavior	Ductility behavior

BUNDREX[®] General Feature of **BUNDREX**[®] Steel Fiber

Distinctive Features

Adding Bundrex steel fibers to the concrete mix helps giving the concrete a higher tensile strength, together with improving flexural toughness and crack resistance.

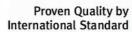



Super BUNDREX®

BUNDREX® Features

- Increases fatigue resistance, flexural toughness, shear force, flexibility, percussion resistance, and fracture resistance of concrete
- · Increases resistance to drying shrinkage
- · Increases abrasion durability, erosion resistance and corrosion resistance
- · Minimizes maintenance and repair expense
- Reduces section thickness of concrete by enhancing physical properties of the concrete
- · Reinforces physical cohesion of concrete by even dispersion of steel fiber
- Improves constructability, cost-effectiveness and safety by not installing wire mesh
- · Offers three-dimensional reinforcement effect within concrete

BUNDREX® PRODUCTS


Features of BUNDREX®

- Improves productivity by replacing partially or totally the rebar .
 Increases crack control, impact resistance and durability.
- Increases economic efficiency.

®.	®
SUPER BUNDREX	BUNDREX

Product Code	D (mm)	L (mm)	Aspect Ratio (L/D)	Tensile Strength (Mpa)	Туре	T/S of MassProduction	Country of Origin	CE
BUNDREX 65/35 CH	0.55	35	65	1,000~2,400	Collated	1,100 1,350 1,650 1,800	Korea	0000
BUNDREX 66/35 CH	0.53	35	66	1,000~2,000	Collated	1,250	Korea	0
BUNDREX 50/30 CH	0.60	30	50	1,000~2,000	Collated	1,200	Korea	0
BUNDREX 80/60 CH	0.75	60	80	1,000~2,000	Collated	1,100 1,250 1,500 1,800	Korea	0000
BUNDREX 67/60 CH	0.9	60	67	1,000~1,900	Collated	1,050 1,200 1,500	Korea	000
SUPER BUNDREX 80/60 CA	0.75	60	80	1,000~1,800	Collated	1,500 1,800	Korea	0
SUPER BUNDREX 65/35 CA	0.55	35	65	1,000~1,500	Collated	1,500 1,800	Korea	0
BUNDREX 50/50 LH	1.0	50	50	1,100	Loose	1,100	Vietnam	0

BUNDREX® CERTIFICATION

'KSEA(Korea)' KOSTEEL Fiber Reinforced Concrete Design and Product

'KS(Korea)' KOSTEEL Steel Fiber Product and Factory

'CE(Europe)' KOSTEEL Steel Fiber Product and Factory

'ISO9001' KOSTEEL Steel Fiber Factory

'ISO 14001 certification KOSTEEL Steel Fibe Factory

'ASTM(USA)' KOSTEEL Steel Fiber Product

'Patent(Korea)' New Shape Steel Fiber

'Patent(USA)' New Shape Steel Fiber

Advantage of **BUNDREX®**

Benefits

- Increased reinforcement effects with wall of even thickness on a rugged surface
- Increased tensile strength, bending strength, shear strength of concrete;
 no hollowing-out; reduction of wall thickness(20%)
- High resistance to cracking; increase in toughness (residual strength) after cracking
- Shotcrete construction possible right after excavation; drop in risk of cave-in disasters; rise in reinforcement effects and safety of permanent structures

Cost-effectiveness

- Reduces labor costs, as no reinforcement assembly process is required
- Reduces construction cost due to shortened construction period
- · Reduced working hours and construction costs

Quality

· Streamlined work process; rise in quality and safety

Shotcrete

Features of BUNDREX®

Other Applications for Shotcrete

Steel Fiber Reinforced Concrete BUNDREX®

Advantage of **BUNDREX**®

As fibers, especially steel fibers, show better concrete performance and also safer and easier work, fibers are regarded as a better solution for reinforcement than mesh.

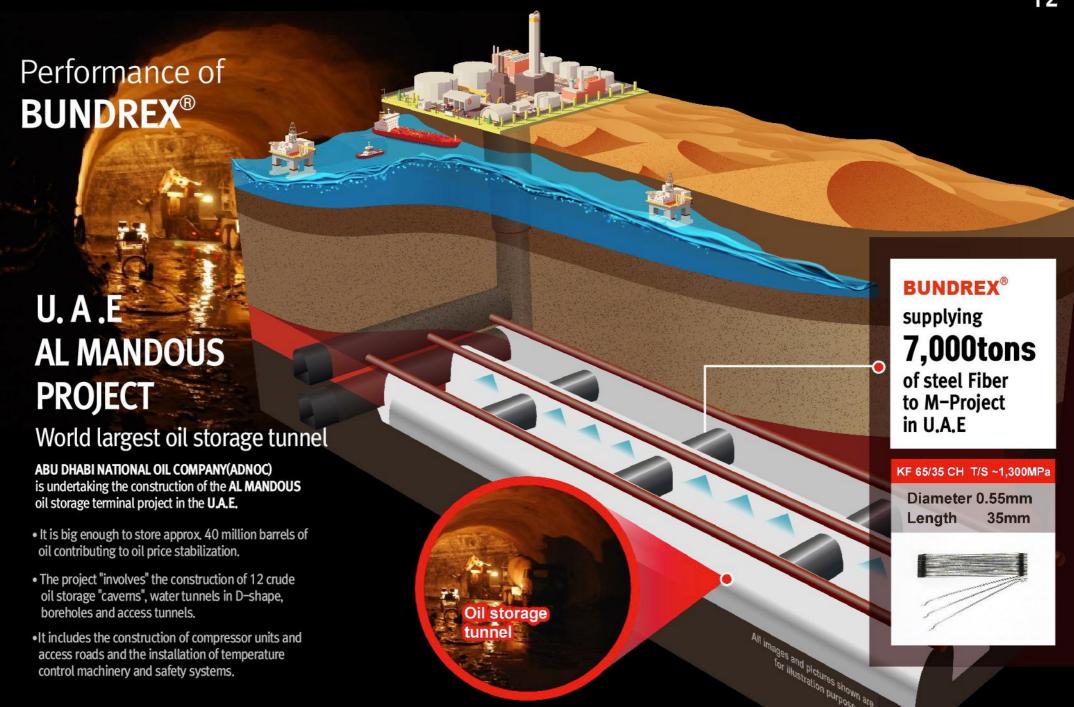
BUNDREX have supplied 450km long 500 tunnels (more than 200,000MT) with our steel fibers for sprayed concrete of NATM tunnels, which proves BUNDREX is the best solution for sprayed concrete.

Steel fiber reinforced sprayed concrete

Advantage of Steel fiber Reinforced Sprayed Concrete (vs. Mesh)

Mesh Reinforcement Sprayed Concrete	Steel Fiber Reinforced Sprayed Concrete	
Difficult to install wire mesh in case of back break from excavation; decreased reinforcement effects.	Increased reinforcement effects with wall of even thickness on a rugged surface.	
Decreased adhesion, layer splitting, hollowing-out due to vibration on wire mesh when placing shotcrete.	Increased tensile strength, bending strength, shear strength of concrete; no hollowing-out; reduction of wall thickness(20%).	
High frequency of cracking in shotcrete and decreased reinforcement effects in case of cracking	High resistance to cracking; increase in toughness (residual strength) after cracking	
Shotcrete reinforcement needed right after excavation due to risk of cave-in disasters; decreased reinforcement effects due to delay of reinforcement.	Shotcrete construction possible right after excavation; drop in risk of cave in disasters; rise in reinforcement effects and safety of permanent structures.	
Low constructability and complex work process.	Streamlined work process; rise in quality and safety.	
Increased construction costs due to longer working hours.	Reduced working hours and construction costs.	

Shotcrete Construction Performance



tunnel & Mining

Experiences in all kinds of tunnel projects
 Metro, High-speed train, Expressway
 Hydro power, Underground & Electric line

Steel Fiber Reinforced Concrete BUNDREX®

Advantage of **BUNDREX**®

Benefits

- Improved productivity by reducing part/all of rebar giving effects of smooth dispersion of concrete and multi-directional reinforcement of steel Fiber
- Increases crack control, impact resistance and durability of the precast reducing crack or breakage of joint between the segments cause by jack thrust
- Secures refractory performance by combining with synthetic Fiber preventing high–strength concrete spalling and increasing residual strength after fire exposure

Cost-effectiveness

- Reduces labor costs, as no reinforcemen assembly process is required
- Reduces construction cost due to shortened construction period
- · Reduced working hours and construction costs

Quality

· Streamlined work process; rise in quality and safety

Precast

Features of BUNDREX®

Other Application for Precast

SFRC precast segment for TBM

Shield TBM method is widely used to drill a tunnel where it is under sea, it has weak ground or blasting is not possible.

The method is to install precast segment lining after excavating ground with TBM (Tunnel Boring Machine).

In the past, rebar was mainly used for reinforcement of precast segment but as the performance of steel fiber is enhanced a lot recently, rebar is being replaced with steel fiber.

BUNDREX offers steel fibers that fits well to precast segment.

Advantage of SFRC Precast Segment for TBM		
Improvement of productivity	Reduces time, space and labor used for installing rebar during segment precast manufacturing.	
Improvement of durability	Increases crack control and breakage joints between segments caused by jack thrust through the effect of 3-dimensional dispersion of steel fiber.	
Improvement of cost-efficiency	Reduces cost of steel material for reinforcement and labor cost Reduces maintenance cost by better durability.	

SFRC Precast Segment Manufacturing Process

The production of segment is a lot simpler because rebar cage process is not required.

Productivity is improved and production cost is reduced.

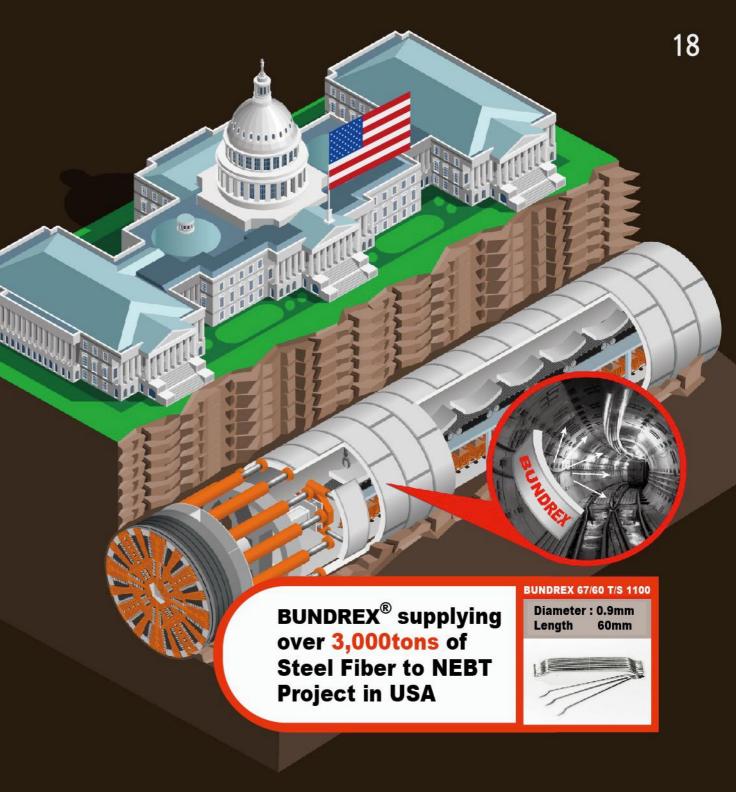
Segment Manufacturing Process

Performance of **BUNDREX**®

Precast Tunnel Segments in Concrete Reinforced with BUNDREX_Steel Fibers

TBM projects performed in Korea, Japan, US, Canada and others.

TBM Construction Performance



Performance of **BUNDREX**®

U.S.A WASHINGTON DC WATER'S CLEAN RIVERS PROJECT

The biggest WASHINGTON DC water's clean rivers tunnel

- The NEBT is the biggest component of WASHINGTON DC Water's Clean Rivers Project.
- •50–160 feet below ground and run 27,000 feet from south of Robert F. Kennedy Stadium to the intersection of Rhode Island Avenue.
- Aligned to intersect the existing chronic flood areas along Rhode Island Avenue.
- Effects: Once it is connected to the other Clean Rivers Project tunnels, the NEBT will help reduce combined sewer overflows to the Anacostia River by 98 percent and the chance of flooding in the areas it serves from about 50 percent to 70 percent in any given year.

Advantage of **BUNDREX®**

Benefits

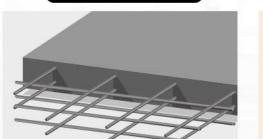
 Reduce frequency of defects that must be remedied due to its excellent shock resistance, fatigue strength, and wear resistance

Cost-effectiveness

- Reduce labor costs as no reinforcement assembly process is required
- Reduce construction cost due to shortened construction period
- Reduce cost of concret by decreasing thickness of slab

Constructability

- Accelerate schedule by eliminating rebar and mesh placement
- Able to use large laser screed equipment

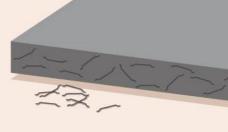

Quality

- · Achieve a high level of ground top smoothness
- Help control cracking better the rebar concrete method

Rebar Vs. Steel Fiber

Improve 10~20% of overall performance compared with usual type provide high quality product for SOG & SOP

Existing rebar-reinforced concrete (RC) method



Rebar-reinforced concrete

Lean concrete

Foundation soil

Steel Fiber Reinforced Concrete (SFRC) Method

Sub-Base

Reduced thickness by 20%/Reduced construction period by 40%/Reduced cost by 20%

Advantage of

BUNDREX®

Applications

Applied to floor slab construction of building and civil engineering structures such as factories, warehouses, container terminal, gas stations, residential foundation slabs and airport taxiways.

Plant

Site Name: Kia Mobis Mexico Plant (Mexico)

Slab Thickness: 250 mm
 Concrete Strength: 27 MPa
 Steel Fiber Input: 20 kg/m³

Warehouse

· Site Name: CUMMINS Warehouse Project (India)

Slab Thickness : 250 mm
 Concrete Strength : 30 MPa
 Steel Fiber Input : 25 kg/m³

Gas Station

• Site Name : Caltex Truck Stop (Australia)

Slab Thickness : 200 mm
 Concrete Strength : 24 MPa
 Steel Fiber Input : 25 kg/m³

Residential Foundation Slab

· Site Name: Lakeside Park for Persimmon Homes (UK)

Slab Thickness : 200 mm
 Concrete Strength: 21 MPa
 Steel Fiber Input: 40 kg/m³

Airport lanes

· Site Name: McCarran International Airport (USA)

Slab Thickness : 400 mm
 Concrete Strength: 30 MPa
 Steel Fiber Input: 50 kg/m³

Container Terminal

· Site Name: Algeciras Harbour Project (Spain)

• Slab Thickness : 320 mm • Concrete Strength : 30 MPa • Steel Fiber Input : 35 kg/m³

Comparison (R.C Slab Vs. SFRC Slab)_1

The SFRC method can reduce slab thickness under the same design conditions, reducing construction cost by 20% and construction period by 40% compared to the RC method.

Structural Design Comparison

Purpose	Industrial Building
•	• Factory
Basic Design	• RC FLOOR
	• Epoxy Paint
Changed	• SFRC FLOOR
Design	 Permeability surface reinforcing agent
Scope of Application	• For all of 1 st Floor
Area	• About 15,000m²

Classification	R.C – SLAB	S.F.R.C - SLAB		
Coefficient of subgrade reaction for foundation	0.05 N/mm ³	0.05 N/mm ³		
Concrete Strength	24MPa	24MPa		
Live Load	30 kN/m ²	30 kN/m ²		
Wheel Load	2.5 kN/wheel	2.5 kN/wheel		
Design Method	Elastic Design (Strength design method)	Plastic Design (Limit state design method)		
Slab Thickness	250 mm	200 mm		
Steel fiber input volume		25 kg/m ²		
Rebar reinforcement volume	2-HD13@200(SD 400, upper & lower, two-way)			
Cost of construction	100	80		

Comparison (R.C Slab Vs. SFRC Slab)_2

R,C-SLAB

Rebar installation involve in a great deal of time and involve in the use of pumps to protect placed rebar.

Flatness

- Must be checked manually during construction,
- Less than FM3 from TR-34 (poor)

Spalling due to wooden formwork

Crack

Unable to reinforce total area of slab due to 2-dimensional reinforcement

→ Durability and usability is poor, with many cracks

Joint

Period

Construction Total constru

ion Total con

Total construction period 23 days

4 days 5 days 8 days 6 days

Sub-Slab Concrete Rebar Pouring & Plastering epoxy finish

S.F.R.C - SLAB

This requires no rebar installation as the steel fiber reinforced concrete can be placed directly from a concrete mixer truck

- * Operate laser Screeding (automatically checks for flatness).
- More than FM2 from TR-34 (good)

Able to reinforce total area of slab due to multidimensional reinforcement

Prevents cracking in order to increase durability and improve usability

reduction in

period

No spalling due to buried steel formwork

Total construction period 14 days

2 days 8 days 4 days

Prepare for Placing surface reinforcing agent

S.F.R.C

Better Concrete Quality

More Cost Efficiency

Optimal Industrial Floor Solution

Comparison (R.C Slab Vs. SFRC Slab)_3

Advantages of steel fibe campared with rebar or mesh		
Crack control	As steel fibers are 3-dimensionly distributed into the concrete, SFRC shows better crack control performance.	
Flatness	FM1 or FM2 class can be acquired by TR-34 standards. (FM3 or FM4 class with rebar or mesh)	
Impact & Fatigue	Better impact resistance and higher fatigue resistance.	
Construction time	40% of construction time is saved by reduced construction process.	
Construction cost	As slab thickness is normally reduced by 20% and labor work for rebar placement is skipped, total cost can be saved up to 20%.	
Easy to work	No concrete pumping/ No rabar work/ No pre lean concrete placement.	

Performance of BUNDREX®

- · Construction of Sampyo Hwa-sung factory
- · Construction of Ssangyong Ciffcon factory
- · Construction of Guri Logistics Center
- · Construction of MH Pyeonggok Logistics Center
- · Construction of Hyuandai Mobis Ulsan factory
- · Construction of Gyeongsan Tyco factory
- · Construction of Hyorim Gyeongsan factory
- · Construction of National Agricultural
- Cooperative Federation Miryang Logistics Center
- · Construction of Sam Shin Chemical factory
- · Construction of SungShin Hysco factory
- · Construction of Gyeongsan DYC Logistics Center
- · Construction of Namyang Nynexmo Hwasung
- · Construction of Icheon, Maegok-ri Logistics Center
- · Construction of AK Logistics Center
- · Hanwha S-ONE Project
- · Construction of Yong-in Bae Bong-ri Logistics
- · Construction of Cheonan E-Land Logistics Center
- · Construction of Mapei Cheonan factory
- · Construction of Pyeongtaek Chun-il Logistics
- · Construction of Seo Yi Chun Cha Logistics Center
- · Construction of Wooiin Industrial Systems Railroad car factory
- · Construction of Ishin textile plant
- · Construction of Renault-Samsung Busan Sola
- · Construction of Mercedes-Benz Parts Logistics Center (Korea)
- · Construction of Ulsan Exhibit Convention Center Office Depot Warehouse (USA)

CUMMINS Warehouse (India)

Nimetech Project (Finland)

Fresenius Medical Care SOG Project (Colombia) generating parking lot

· Construction of Deokpyeong Hu-med Logistics

Industrial Slab for Hitachi Fortune Transformer nc-New Plant

(Taiwan)

SFRC SOG construction Performance

From 2014 to 2020, we provided design support to 308 Domestic South korea sites and supplied BUNDREX steel fiber products to 134 SFRC floor slab construction sites.

Renault-Samsung Busan Sola generating parking lot construction

Mapei Cheonan factory construction

Deokpyeong Hu-med Logistics Center construction Cheonan E-Land Logistics Center construction

Mercedes-Benz Parts Logistics Center construction (Korea)

Daimler Colombia Mercedes Benz SOG Project (South America)

Kia Mobis India factory construction (India)

Coca Cola Plant Project (South America)

Design supported - 308 sites

Fibers supplied - 134 sites

Supplied quantity - 6,000 Tons

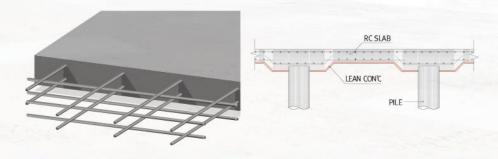
Advantage of BUNDREX®

Constructability

- Reduce construction time by omitting the rebar installation process
- Construct in fast-track method using Laser Screed equipment

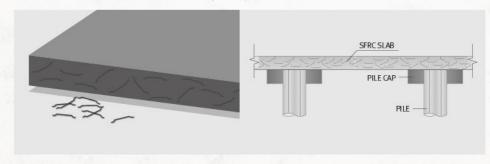
Cost-effectiveness

- Material cost reduced due to skip the process for sub-slab concrete
- Reduce maintenance cost due to multidimensional reinforcement


Quality

- Increase flexural strength of concrete through high tensile steel fiber
- Increase crack suppressing effect compared to RC method (Multidimensional reinforcement)
- Reduce dry shrinkage cracks due to separation of piles and slabs

Rebar Vs. Steel Fiber


Improve 10~20% of overall performance compared with usual type Provide high quality product for SOG & SOP

Conventional Rebar-reinforced Concrete (RC) method

Improved Quality / Reduced construction period / Reduced cost

Steel Fiber Reinforced Concrete (SFRC) Method

Advantages of BUNDREX®

SFRC

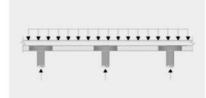
Floor slab method

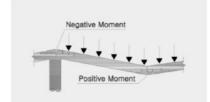
Steel fiber reinforced concrete, which was widely used for shotcrete, is now widely used for floor slabs and precast.

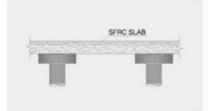
High quality SOG (Slab On Grade) and the SOP (Slab On Pile) steel fiber reinforced concrete floor slab method is applied on various sites in the world.

Overview of Construction Method

External Load Factor Analysis


Racking System


I Dynamic Load


I Crack Control

Stock Load

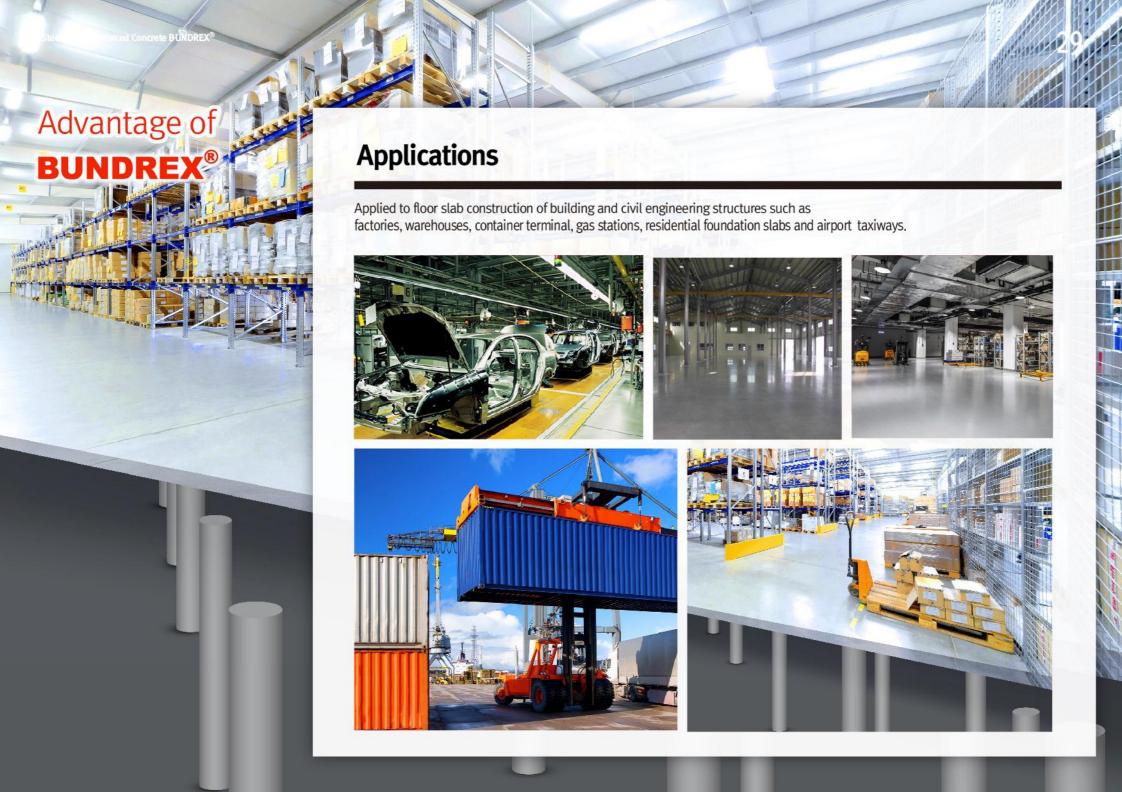
2 SOP Design

I Input load

I Examine Flexural Resistance

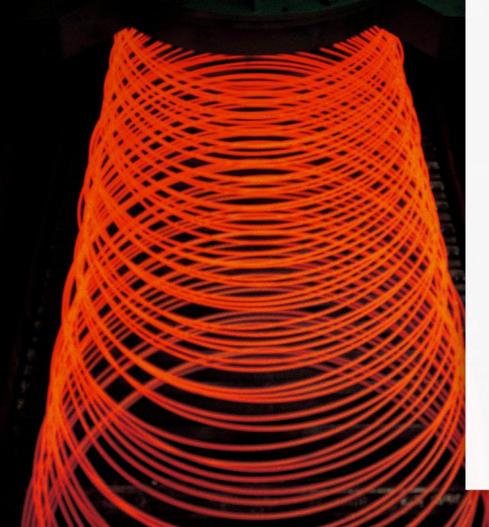
I Container Terminal

SFRC SOP Construction



I Pile Ground Reinforcement → I Concrete Pouring

▶ I Flattening Work

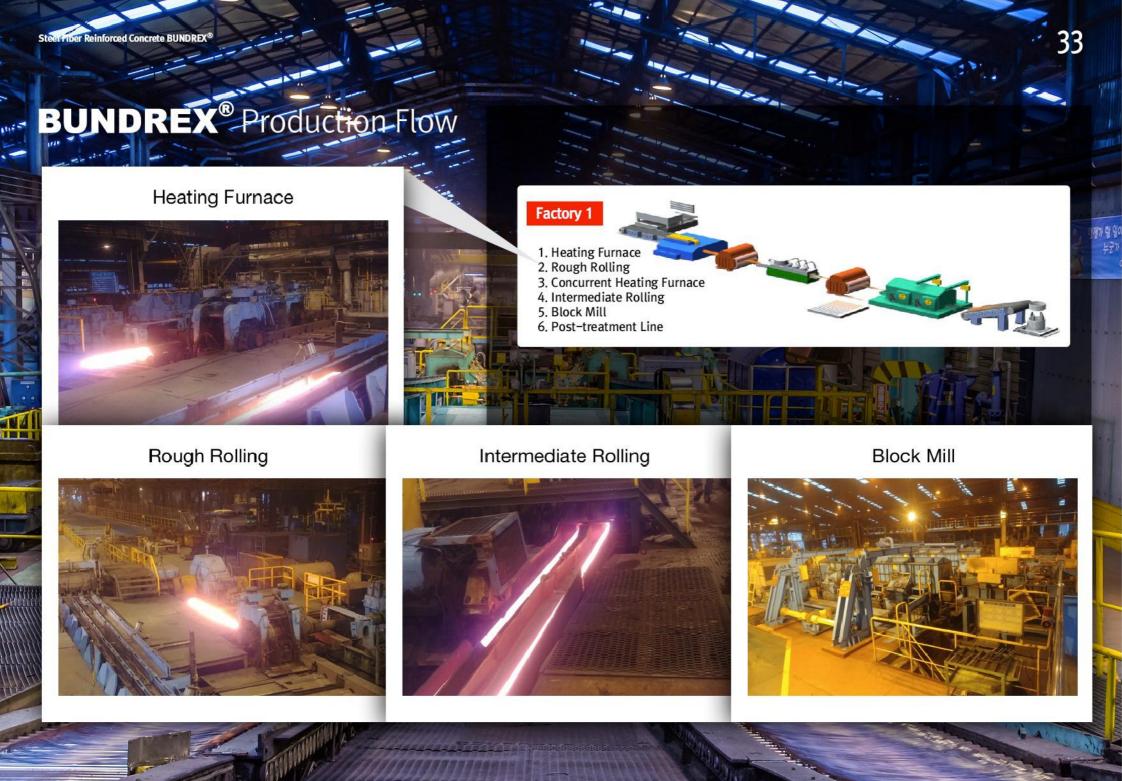

▶ I Completed

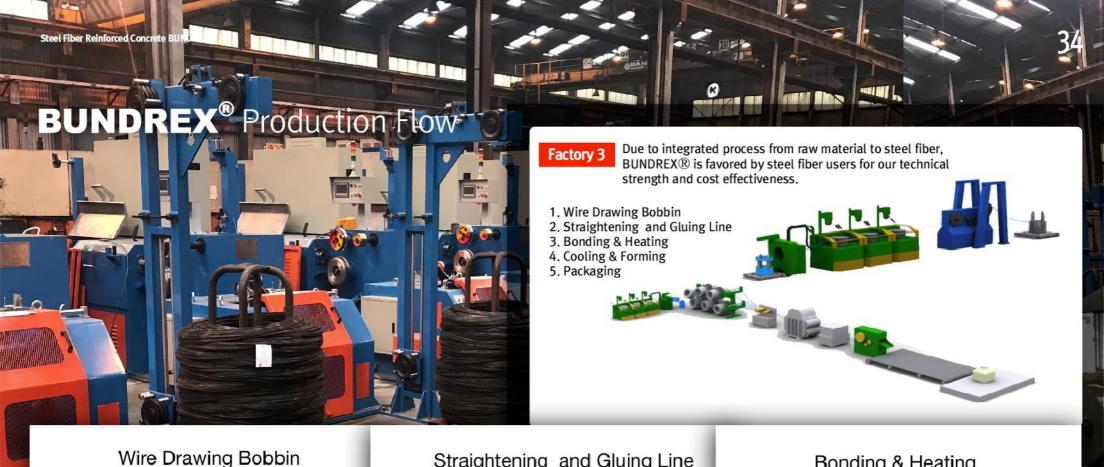
Excellency of **BUNDREX**®

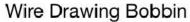
BUNDREX is an ideal concrete reinforcement which shifts the properties of concrete from brittleness to ductility, and increases toughness and resistance to cracking by drying shrinkage and plastic shrinkage.

Excellency in Production

Competitive advantages in quality and cost through integrated production from wire rod to steel fiber.


Excellency in Market Performance


- No.1 M/S in steel fiber market in Korea
- Continuous growth in overseas market 2021 Forecast Q'ty: 20,000 ton


Excellency in Technology

- Proven quality by International Standard
- Advanced technical support as a solution provider
- Continuous investment

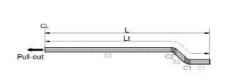
Straightening and Gluing Line

Bonding & Heating

Pull-out test of **SUPER BUNDREX®**

Performance enhancement of arched steel fiber is caused by improving of its pull-out energy.

SUPER BUNDREX® Pull-out mechanism


Classification

Type

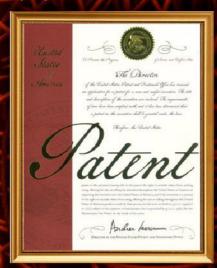
Existing type (A-type)

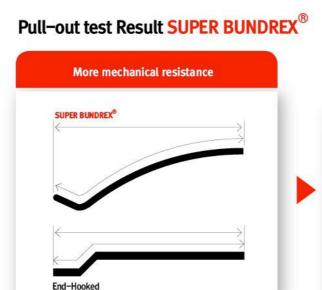
Pull-out mechanism

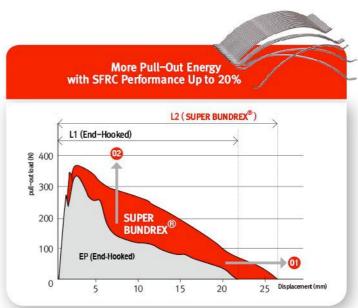
Overall resistance length(Lt) is shorter than B-type"C" section with a large resistance is less than B-type.

Pull-out test view

SUPER BUNDREX®

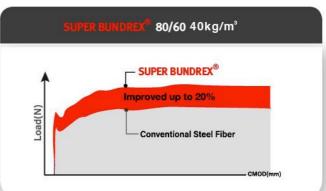

Overall resistance length(Lt) is longer than A-type "C"section with a large resistance is greater than A-type




Pull-out test Result SUPER BUNDRE

Performance enhancement of arched steel fiber is caused by improving of its pull-out energy.

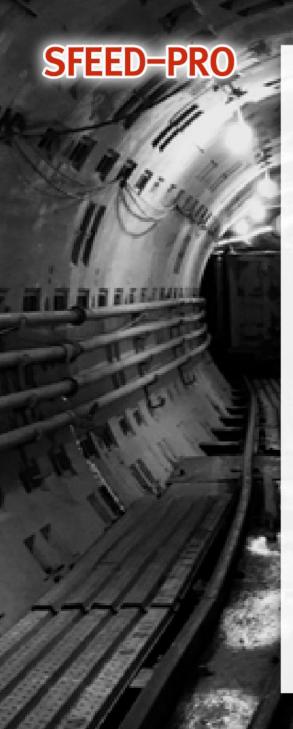
Patent No. 15510305 (USA)



More SFRC Performance Up to 20% SUPER BUNDREX®

Steel Fiber Enhanced Engineering Design Program

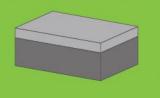
SFEED-PRO, developed by KOSTEEL, is a unique design program that provides customers with accurate, modern, structural design solutions, and has been certified by Korean Structural Engineering Association Institute of Construction and Structural Technology (KSEA) for the superior performance of **BUNDREX**® steel fibers.


R&D team of BUNDREX

SFEED-PRO, developed by **BUNDREX® Institute of KOSTEEL** reflecting state of the art construction design standard of EU & US, provides the best structural design solution to our customers in order to realize the superior performance of our steel fiber.

Feature

- Enter various variables for requirements such as materials, loads, safety factors and environmental conditions
- · Case simulation by varying slab thickness and concrete strength
- Perform case-by-case safety check and economic analysis through the above process
- Apply flexural toughness value reinforced with BUNDREX® steel fiber



Steel Fiber Enhanced Engineering Design Program

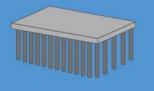
SFEED-Pro-GSS

Grade Supported Slab

SFEED-Pro-GSS is design program for SOG. The often times, the Kosteel design allows for a reduction in the lab thickness and steel fiber usage can be calculated based on the load and ground conditions.

Design Criteria: TR-34, ACI 360 SFRC Performance Parameters: Re.3

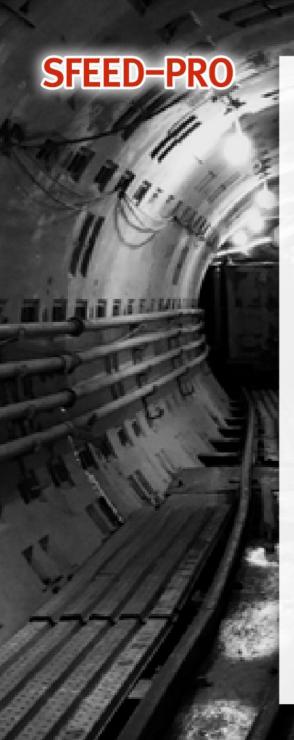
SFEED-Pro-SEG Segmenta Lining



SFEED-PRO-SEG is a program to design segmental lining for tunnel. **BUNDREX**® keeps updating the program reflecting the state of the art technology to satisfy customers' needs.

- Design standards: RILEM, ITA, ACI 544
- Unit: SI
- SFRC performance parameter: CMOD value

SFEED-Pro-PSS


Pile Supported Slab

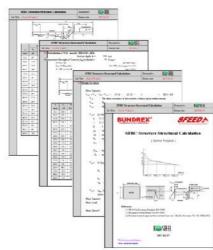
SFEED-Pro-PSS is an SOP design program used in conditions where the ground is very unstable to support concrete slabs. BUNDREX PRIME has been developed to solidify slab under conditions of pile support with the appropriate amount of steel fiber.

- Design Criteria: TR-34, ACI 360
- SFRC Performance Parameters: CMOD

SFEED-Pro-GSS	SOG
SFEED-Pro-PSS	SOP
SFEED-Pro-SEG	TBM

Steel Fiber Enhanced Engineering Design Program

- -Improve productivity by reducing all of rebar
- -Increase crack control, impact resistance and durability
- -Increase economic efficiency



SFEED-PRO (Steel Fiber Enhanced Engineering Design Program)

Classification	Input		Design Calculation	
Material	Concrete: Designate initial design strength, incremental value, number of cases (*) Steel fiber: Choose size of Bundrex®			
Slab	 Region: Designate number and area of region Thickness: Designate initial thickness, incremental value, number of cases (*) 		Calculate various cases of structural designs by concrete strength (*) and slab thickness (**)	
Dowel	Enter loading condition at joints Enter load transfer rate (%)		based on the given conditions	
Load	 Enter load conditions Concentrated load, linear load, uniform load Rack • Uniform • Mezzanine Fork Lift • Wall • Truck 	→	Calculate the R _{e,3} values for each case	-
Safety factor	Enter safety factor for loads and materials		Calculate steel fiber dosages for each case with the appropriate $R_{\text{e},3}$	
Environmental Factor	Enter temperature difference between top and bottom of slab		Cost analysis based on amounts of	
Sub-base	FEnter coefficient of friction between slab and sub-base Enter modulus of sub-grade reaction (k)		concrete and steel fiber (***)	
Unit Cost	• Enter unit cost for concrete and steel fiber (***)			

Output case and output of for each case

SFEED-PRO (Steel Fiber Enhanced Engineering Design Program)

vs Other Program

Classification	Other Program	SEEED PIO
Economic Feasibility Analysis	 No analysis of economic feasibility available No analysis of economic feasibility function Unable to provide optimum design case 	 Analysis of economic feasibility available Cost analysis for economic feasibility function available for concrete & steel fiber Easy to case analysis for optimal design
Convenience of Design	 Only 1 concrete thickness and strength input is allowed Separate calculation where there is 'no good' design Long time required for design calculation 	 Up to 5 concrete thicknesses and strength inputs are allowed Recursive calculation available at once with minimum time (up to 25 cases) Reduce structural design time
KSEA Certification	 Other programs (Bekart, Arcelomithal, and Macaferries) claim to follow the TR-34 guide as a standard for calculation However, there has been no approval by a qualified third party 	 Following TR-34 guide as standard for its calculation Approval by KSEA, who has the top professional in this field KSEA(Korea Structural Engineering Association)
Details and Specification	 No construction guide or details available Contractor or design engineers must produce additional specifications or detailed drawings 	 Construction guide or details available for SFRC SOG Provide standard construction specification Provide convenience to contractor or designer in performing their work

We are the only one steel fiber manufacturer in the world who manufactures wire rod to steel fiber in-house, which makes us competitive in cost and quality.

Pohang #.3 factory

Pohang Steel Industrial complex Korea

Production Capacity:

Approx. 24,000 tons /year

Main Products

Steel Fiber

KOSTEEL

23,358m²

No. of employees

50

Daily shift / 5 days a week

Total Capacity of BUNDREX:

45,000 MT

Daily shift / 5 days a week

- Subcontractors (domestic use)
- · Contract Vol./Month: 1,750 MT
- · Contract Vol./Year: 21,000MT

Pohang #1,2 Factory

Pohang #3 Factory

Eumsung Factory

Vietnam Factory

Pohang #1 Factory

POINTS OF CONTACT

Bundrex Division

Global Sales Team

Everywhere in your life!

Director

Joey Yea

tel +82-2-2106-0278 e-mail mhyeo@kosteel.co.kr

Europe

Brandon Lee tel +82-2-2106-0260

e-mail sh5021@kosteel.co.kr

North America

Dominica Lee

tel +82-2-2106-0120 e-mail dominica@kosteel.co.kr

Asia & Middle East

Kevin Back

tel +82-2-2106-0135 e-mail kkjin432@kosteel.co.kr

Latin America

Antonio Kim

tel +82-2-2106-0119 e-mail shkim@kosteel.co.kr

Asia & Middle East

An, Tran Van

tel +82-2-2106-0127 e-mail antran91@kosteel.co.kr

License & CE, ISO certificate

License

(1/1)			- 84808633
발 급 번 호 Issuance number 5882-822-8114-792 상호 (웹 인 명)	사업자등록증명 Certificate of Business Regis (법인사업자) (Corporate Taxpayer)	stration	커 리 기 간 Processing time 즉 시 Immediately
Name of company			
사 임 자 등 목 번 호 Business registration number	214-86-05364		
성 명 (대 표 자) Name of representative	구원권 Hyam Chel Koo		
주 번 (앱 인) 등 록 번 호 Resident(Corporation) registration number	110111-0211641		
사 열 장 소 제 지 Business Address	서울특별시 동대문구 시가정도 122, 4중(전송등, 파우스토리 4중) 4F.Hauntory., 122, Sagajeong-ro, Dougdamun-gu, Seoul, Republic of Korea		
개 입 일 Date of business commencement	1977년(Year) 03월(Mouth) 30월(Day)		
사 업 차 등 목 및 Date of business registration	1995년(Year) 05년(Month) 30년(Day)		
Q) # Business type	제조합/부동산 Manufacturing/Real estate activities		
Business item	현대인언, 안송보인보호를 Manufacture of Bot Rolled, Drawn and Extr 인데 Renting of non-residential buildings(stor		el Products
	시계(제인제) Name(Name of company)	주변(A Resident (Busin	(영차)등폭변호 ess) registration No
# # Al W # Joint business owner	해당사항 없습니다 (No Data)		
Joint business owner	3 4 8		

위와 같이 증명합니다.

I certify that above information is true and correct to the best of my knowledge and belief. 數 新闻事会 管理室 簡單 分裂炎原料 李惠 明祖祖 中 製造山口。 This information is true as of the issuance date of this certification and but maybe subject to change in the future.

접 수 번 호 Receipt No.	501702125976
당 당 부 시	인원봉사심
Department	Tempayer Service Center
양 영 의 Staff in Charge	引力後 KIM KICHEON
연 학 차 Telephone No.	02-958-0222

2020 년 1 원 17 일 Year Month Day

동 대 문 세 무 서 잠의로된

* 본 중영은 휴객스(www.hometax.go.kr)에서 태인 온라인 서비스를 통해 발급된 중영사입니다.

TECHNICKÝ A ZKUŠEBNÍ ÚSTAV STAVEBNÍ PRAHA, s.p. Technical and Test Institute for Construction Prague

Notified Body 1020

CERTIFICATE OF CONSTANCY OF PERFORMANCE

No. 1020 - CPR - 010037679

In compliance with Regulation (EU) No 305/2011 of the European Parliament and of the Council of 9 March 2011 (the Construction Products Regulation or CPR), this certificate applies to the construction product

Steel fibres for concrete

Bundrex KF 60/30, KF 68/35, KF 50/30, KF 56/35, KF 71/50, KF 66/50, KF 60/60, KF 67/60, KF 60/60, KF 60/60 SUPER BUNDREX A 80/60HL, A 65/35HL

(all bundled: glued)

placed on the market under the name or trade mark of

KOSTEEL Co., Ltd.

40, Hodong-Ro 58 beon-gil, Nam-gu, Pohang-si, Gyeongsangbuk-do, Korea

and produced in the manufacturing plant

KOSTEEL Co., Ltd.

40, Hodong-Ro 58 beon-gil, Nam-gu, Pohang-si, Gyeongsangbuk-do, Korea

This certificate attests that all provisions concerning the assessment and verification of constancy of performance described in Annex ZA of the standard

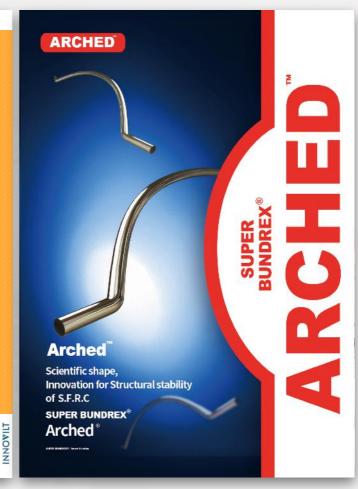
EN 14889-1:2006

under system 1 for the performance set out in this certificate are applied and that the factory production control conducted by the manufacturer is assessed to ensure the

constancy of performance of the construction product.

This certificate was first issued on 15 February 2017 and will remain valid as long as neither the harmonised standard, the construction product, the AVCP methods nor the manufacturing conditions in the plant are modified significantly, unless suspended or withdrawn by the notified product certification body.

The slamp of the Notified Body 1020 Praha, 9 October 2020


2020 POSCO Certified Innovilt

INNOVILT

SUPER BUNDREX®
ARCHED

License & CE, ISO certificate

ISO

CERTIFICATE OF APPROVAL

KOSTEEL Co., Ltd.

IST PACTORY: 39, HODORO-HO, NUM-GU, POHANG-S1, GYBENSANGERK-SO, ROREA
 20d PACTORY: 40, HODORO-HO SHERIN-GIL, NUM-GI, POHANG-S1,
 CHENGASANER, PO, DIERA
 -3rd PACTORY: 673, DARRAN-HO, DIERA
 MANCHEMORIAN-HO, DIERA

Korean Standards Association hereby certifies that the Quality Management System of the above organization has been assessed and found to meet the requirements of the standard and scope of certification detailed below:

CERTIFICATION No. QMS-3350

KS Q ISO 9001:2015/ISO 9001:2015

SCOPE OF CERTIFICATION

VALID FROM

11 July, 2022

12 July, 2019

Original Certification Date: 12 July, 2010

Date of Issue : 07 April, 2019

KOREAN STANDARDS ASSOCIATION

APPENDIX

THIS APPENDIX SPECIFIES THE SCOPE OF CERTIFICATION GRANTED TO :

CERTIFICATION No : QMS-3350

KOSTEEL Co., Ltd.

- 1ST FACTORY : PRODUCTION OF STEEL BARS FOR CONCRETE REINFORCEMENT. LOW CARRON STEEL WIRE RODS, LOW CARRON STEEL WIRES AND FLAT COIL FOR CONSTRUCTION

- 2ND FACTORY : PRODUCTION OF LOW CARBON STEEL WIRES AND STEEL FIBER

- 3RD FACTORY : PRODUCTION OF LOW CARBON STEEL WIRES,

07 April, 2019

CERTIFICATE OF APPROVAL

KOSTEEL Co., Ltd.

- 15T FACTORY : 35, HODONG-RO, NAW-GU, PONANG-SI, GATERICSANGERE-DO, NOREA - 2nd FACTORY : 40, HODONG-RO SEREDH-GE, NAW-GE, PONANG-SI, GYEDINGSANGERE-DO, KOREA

Korean Standards Association hereby certifies that the Environmental Management System of the above organization has been assessed and found to meet the requirements of the standard and scope of certification detailed below:

EMS-1325

KS I ISO 14001:2015/ISO 14001:2015

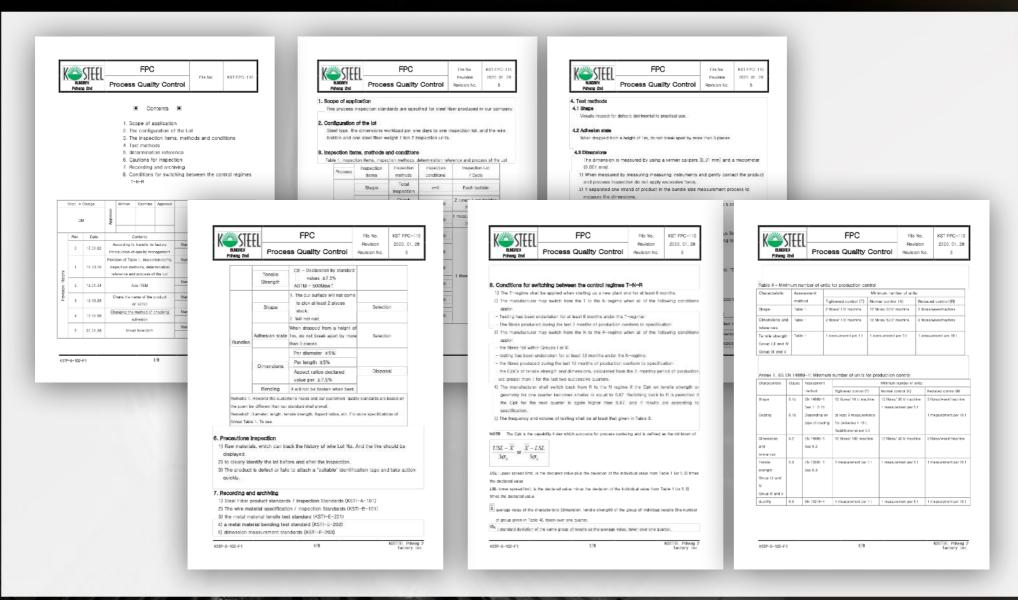
SCOPE OF CERTIFICATION

PRODUCTION AND SERVICING OF STEEL FIBER

VALID FROM 11 May, 2018 VALID UNTIL 10 May, 2021

Original Certification Date: 11 May 2015

Date of Issue : 16 April, 2018


KOREAN STANDARDS ASSOCIATION

Quality control documents

